VILLAGE OF WAKEMAN WATER DEPARTMENT

DRINKING WATER CONSUMER CONFIDENCE REPORT FOR 2020

What's the source of your drinking water?

The Village of Wakeman drinking water is supplied by Northern Ohio Rural Water. The last several pages of this report provide information about Northern Ohio Rural Water suppliers, which are also the initial sources of Wakeman's water.

Protecting our drinking water source from contamination is the responsibility of all area residents. Please dispose of hazardous chemicals in the proper manner and report polluters to the appropriate authorities. Only by working together can we insure an adequate safe supply of water for future generations.

What are the sources of contamination to drinking water?

The sources of drinking water both tap water and bottled water includes rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include: (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; (B) Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; (C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm runoff, and residential uses; (D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems; (E) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulation establishes a limit for contaminants in bottled water, which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by call the Environmental Protection Agency's Safe Drinking Water Hotline (1-800-426-4791).

Who needs to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infection. These people should seek advice about drinking water from their health care providers. USEPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

About your drinking water.

The EPA requires regular sampling to ensure drinking water safety. The Village of Wakeman, along with Northern Ohio Rural Water and the Cities of Elyria and Lorain conducted sampling for bacterial, inorganic, radiological, synthetic organic and volatile organic contaminants during the year 2020. Samples were collected to analyze for a variety of different contaminants, most of which were not detected in the Village of Wakeman water supply.

"If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Village of Wakeman is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at http://www.epa.gov/safewater/lead."

Definitions of some terms contained within this report are outlined on the last page.

THAT OF WARLEN WAY WATER DEPARTURED

TABLE OF DETECTED

MCLG	MCL	· · · · · · · · · · · · · · · · · · ·	the second second by a subject	Violation	Sample Year	Typical Source of Contaminants
Disinfecta	nt By-Pr	oducts		an a		
MRDLG = 4	MRDL = 4	1.22	0.85-1.47	No	2020	Water additive used to control microbes
N/A	60	31.9	15.6-27.3	No	2020	By-product of drinking water disinfection
N/A	80	33.23	23.7-44.6	No	2020	By-product of drinking water disinfection
Action Level (AL)	Results		90% of test levels were less than	Violation	Year Sampled	Typical source of Contaminants
15 ppb			2.5 ppb	No	2019	Corrosion of household plumbing systems; erosion of natural deposits
0 samp	les were f	ound to	have lead levels in	excess of the	lead action le	evel of 15 ppb.
1.3 ppm	BOUR MALINA		0.16 ppm	No	2019	Erosions of natural deposits; leaching from wood preservatives; Corrosions of household plumbing systems
	isinfecta MRDLG = 4 N/A N/A N/A Action Level (AL) 15 ppb 15 ppb	isinfectant By-PrMRDLGMRDL= 4= 4N/A60N/A80ActionIndivid Result over the 15 ppb15 ppbN/A_0_samples were for N/A	MCLGMCLFoundisinfectant By-ProductsMRDLGMRDL $= 4$ 1.22 $= 4$ 1.22N/A6031.9N/A8033.23ActionIndividualLevelResults(AL)over the AL15 ppbN/A1.3N/A	MCLGMCLFoundDetectionspisinfectart By-ProductsMRDLGMRDL= 41.22 $0.85-1.47$ = 4= 4 1.22 $0.85-1.47$ N/A60 31.9 $15.6-27.3$ N/A80 33.23 $23.7-44.6$ KesultsPowo of testLevelResults(AL)over the ALIevels were15 ppbN/A 2.5 ppb.0_ samples were found to have lead levels in1.3N/A 0.16 ppm	MCLGMCLFoundDetectionsViolationpisinfectant By-ProductsMRDLGMRDL 1.22 $0.85-1.47$ No $= 4$ $= 4$ 1.22 $0.85-1.47$ NoN/A 60 31.9 $15.6-27.3$ NoN/A 80 33.23 $23.7-44.6$ NoActionIndividual Results 90% of test levels wereViolationAction (AL)N/A 90% of test levels wereViolation15 ppbN/A 2.5 ppbNo1.3N/A 0.16 ppmNo	MCLGMCLFoundDetectionsViolationYearisinfectantBy-ProductsMRDLGMRDL 1.22 $0.85-1.47$ No2020N/A60 31.9 $15.6-27.3$ No2020N/A80 33.23 $23.7-44.6$ No2020N/A80 33.23 $23.7-44.6$ No2020ActionIndividual Results90% of test levels were less thanViolation SampledYear Sampled15 ppbN/A2.5 ppbNo20191.3N/A0.16 ppmNo2019

The Village of Wakeman has a current, unconditional license to operate its water system.

How do I participate in decisions concerning my drinking water?

Public participation and comments are encouraged at regular meetings of Village Council, which is held the second Monday of every month at 59 Hyde St. in Wakeman. The meeting time is 7:30 PM.

For more information on your drinking water contact Trish Sommers at 440-669-8773.

The following pages contain source water information as well as a table of detected contaminants from the Cities of Elyria and Lorain Water Departments and the Village of New London, the initial suppliers of Wakeman water.

Hie EPA requise equilation provide an plant drinking seteration for SHate or Sederman share and sentrate Gov Raiat Nation and the Chies of Elyptic and Center provided campling for remembric transfered state destructions of the Content velation regulate contantioners during the year 2020. Sungles were collected to and a set is a collected of the material content of the last content of the detected to be Viluge of Wakerset Sungles were collected to a the activity of the activity of the material from the test of the set of th

"It prevent, elevated havela et lead over stations breach problem, estadolity for program women and ynewn thekere. Lead redrinking water is prevently, deet, materials and companying to coefficient affit term of the elevation of the Cillagg of Waternam is responsible for providing hash quality denting a met, buy correct control de variables and the stati comparison is responsible for providing hash quality denting a met, buy correct control de variables and the station of the literature filter your rater has been or drug for control to the correct control de variables and a filter to gate or applied and the responsible for providing hash quality dentified as met, buy correct control de variables and the filter to the filter comparison for filter your rater has been or drug for control to the correct of the restrict de variables and the filter to the opplied and the state hash and the state for direct to the control of the filter of the term is the filter of the weath to have per more the filter to the state of the direct to the control description of the term that the state of the filter of the statistic filter for the filter when a state for direct to the control description of the term of the filter of the statistic filter for the falle for the state of the direct to the state filter of the term filter of the filter statistic filter for the falle filter when a state for the state of the state filter of the state of the filter available filter the fall. Trudents when a restrict to the state of the state filter of the statistic filter of the fall of the state of the filter of the state of the state filter.

dupinitions of some terms combined within this regimer are purified to rise for the

2020

NORTHERN OHIO RURAL WATER

MAIN DISTRICT

TABLE OF DETECTED CONTAMINANTS

Contaminants Units)	Year	MCLG [MRDLG]	MCL [MRDL]	Level Found	Range of Detection	Typical Source of Contaminants	Violatio
Disinfection Byprod	cts		George A				
otal Trihalomethanes	2020	NA	80	58.85	22.9 - 74.3	By-product of drinking water chlorination	NO
TTHM) (ppb) Ialoacetic Acids	2020	NA	60	35.75	16.5 - 38.8	By-product of drinking water chlorination	NO
HAA5) (ppb)	0000	F /1	[4]	1.6	1.4 - 1.7	Water additive used to control microbes	NO
Total Chlorine (ppm)	2020	[4]	[7]	Individual			
Contaminants (Units)	Year	MCLG	MCLG	Depulto	90% of tes were less		nts Violatio
norganic Contamin	ants						
	2019	1.3	AL=1.3	0	.134 (90th	percentile) Corosion of household plumbing systems	NO
Copper (ppm)	0 of 30 cam	nles were fou	and to have copr	per levels in exe	cess of the co	opper action level 1.3 ppm.	
	2019	0	AL=15	1	<3.0 (90th	Corocion of household humbing	NO
Lead (ppb)	1 of 30 sam	ples were fou	ind to have lead	levels in exces	ss of the lead	action level 15 ppb.	
				A WATER			
		TAE	SLE OF DE				line diala
Contaminants		:		Level	Range of		11-1-4-
	Year	MCLG	MCL	Found	Detection	Contaminants	Violatio
(Units)	anto						
Inorganic Contamin	ants	T			1	Discharge of drilling wastes;	
Devium (mmm)	2020	2	2	0.018	0.018	Discharge from metal refineries;	NO
Barium (ppm)	2020	a kolannäl 🦏			Erosion of natural deposits		
		Erosion of natural deposits;	Erosion of natural deposits;				
Fluoride (ppm)	2020	4	4	1.077	0.83 - 1.21	Additive which promotes strong teeth	NO
			sino di Si			Runoff from fertilizer use; leaching from	
		10	10	0.95	<01-09	septic tanks, sewage; erosion of	NO
Nitrates (ppm)	2020 10	10	0.00		orgenbulat Acada eran on musurann as eeran ean a		
						natural deposits	
Microbiological Con	ntamina	nts	1				
Total Organic Carbon (TOC)	2020	N/A	TT removal >1.0	1.20	1.00 - 1.79	Normally present in the environment	NO
Turbidity (NTU)	2020	N/A	100%	0.18	0.06 - 0.18	Soil runoff	NO
To bidle is a magnitude of the	cloudiness e daily sam	of water and ples and shal	<0.3 is an indication I not exceed 1 N	of the effective TU at any time	ness of the file. As reporte	Itration system. The tubidity limit set by the d above, the City of Elyria's highest recorded tu	rbidity
result for 2020 was 0.18 NTI	J and lowes	t monthly per	centage of sam	ples meeting th	ne turbidity lin	nits was 100%.	
		Average	Range of	Sample			
Contaminants (Units)	Year	Level	Detection	Location	:		
		Found					
		la mite sta	a Dula /110				
Unregulated Conta	2020	0.02	0.0207 - 0.026	Source Wate	or l		
Bromide (ppm)	2020	7,53	7.53	Entry Point			
1-Butanol (ppb)	2020	15.84	10.2 - 22.3	Distribution			
HAA5 (ppb)	2020	10.19	8.4 - 12	Distribution		Dumments of detailing such a ship for allow	
HAA6 (ppb)	2020	25.04	17.8 - 33.1	Distribution		Byproduct of drinking water chlorination	
HAA9 (ppb)		0.74	0.74	Entry Point			
Manganese (ppb)	2020	0.14	0.74				

LORAIN WATER DEPARTMENT TABLE OF DETECTED CONTMINANTS

Contaminants (Units)	Year	MCLG	MCL	Level Found	Range of Detection	사업에 전자 것 것 같은 것은 것은 것을 위해 회가 없는 것은 것은 것은 것은 것을 가지 않는 것을 수 없다.	Violation
Inorganic Contan	ninants						
Barium (ppm)	2020	2	2	0.016	N/A	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	NO
Fluoride (ppm)	2020	4	4	1.01	0.9 - 1.08	Erosion of natural deposits; Water additive which promotes strong teeth	NO
Nitrate (ppm)	2020	10	10	0.99	0.0 - 0.99	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of	NO
Microbiological C	ontaminar	its				natural deposits	
Turbidty (NTU) % meeting standard	2020	N/A	Π	0.14	0.01 - 0.14	Soil runoff	NO
result for 2020 was 0.14 N	TU and lowest	ies and shall	not exceed 1 h	an indication o	. As reported	ness of the filtration system. The tubidity limit se above, The City of Lorain's highest recorded tur ts was 100%.	
Total Organic Carbon (TO	C) 2020	N/A	Π	1.34		Naturally present in the environment	NO

CITY OF SANDUSKY PUBLIC WATER WORKS TABLE OF DETECTED CONTAMINANTS

Contaminants (Units)	Year	MCLG	MCL	Level Found	Range of Detection	흔성 방법에 잘 알려서 이가 가지? 한 것이 없는 것, 이가 귀에서 여러 집에 들었다. 이는 것은 것은 것은 것이 같이 많이 많이 없다. 것이 같이 많이 많이 많이 없다.	Violatio
Inorganic Contamir	nants						
¹ Nitrate (ppm)	2020	10	10	1.0	0.0 - 0.98	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits	NO
² Fluoride (ppm)	2020	4	4	0.9	1 0.0 - 1.1	Erosion of natural deposits; Water additive which promotes strong teeth	NO
Barium (ppm)	2020	2.0	2.0	0.017	0.017	Discharge of drilling wastes; discharge from metal refinerles; erosion of natural deposits could become seriously ill and, if untreated, ma	NO
of the bones; children may g developing teeth before they Contaminants	erupt from th	eth. Mottling he gums.	, also know as o	dental fluorosis	Range of	could get bone disease, including pain and tend brown staining and/or pitting of the teeth, occurs Typical Source of	erness only in
(Units)	Year	MCLG	MCL	Found	Detection		Violatio
Microbiological Con	ntaminan	ts			, Bottootton,	, Containinaints	
Turbidity (NTU)	2020	<0.10	0,3	0.12			
/masting standard		1		A Designation of the local division of the l	0.02 - 0.12	Soil runoff	
%meeting standard	2020	N/A	TT	100%	10 M. M. 10		NO
Turbidity: Turbidity is a mea	sure of the cl	oudiness of	the water and is	an indication of	of the effective	ness of the filtration system. The tubidity limit se	and the second se
	sure of the clue daily sample	oudiness of	the water and is	an indication of	of the effective	ness of the filtration system. The tubidity limit se	et by the
Turbidity: Turbidity is a mean EPA Is 0.3 NTU in 95% of the Fotal Organic Carbon (TOC) Contaminants	sure of the clue daily sample	loudiness of les and shall	the water and is not exceed 1 N TT MCL	an indication of TU at any time	of the effective	ness of the filtration system. The tubidity limit se Naturally present in the environment Typical Source of	et by the NO
Turbidity: Turbidity is a mean EPA Is 0.3 NTU in 95% of the Fotal Organic Carbon (TOC) Contaminants Units)	asure of the class and ally sample 2020 Year	loudiness of les and shall N/A MCLG	the water and is not exceed 1 N TT MCL	an indication of TU at any time 1.4 Level	of the effective 1.1 - 1.9 Range of	ness of the filtration system. The tubidity limit se Naturally present in the environment Typical Source of	et by the NO
Turbidity: Turbidity is a mean EPA Is 0.3 NTU in 95% of the Total Organic Carbon (TOC) Contaminants Units) Units)	asure of the class and ally sample 2020 Year	loudiness of les and shall N/A MCLG	the water and is not exceed 1 N TT MCL	an indication of TU at any time 1.4 Level	of the effective 1.1 - 1.9 Range of	ness of the filtration system. The tubidity limit se Naturally present in the environment Typical Source of Contaminants	et by the NO Violation
Turbidity: Turbidity is a mean EPA is 0.3 NTU in 95% of the Total Organic Carbon (TOC) Contaminants Units) Units) Jnregulated Contar Manganese (ppb)	asure of the classical sample daily sample 2020 Year Minants 2020	loudiness of les and shall N/A MCLG [MRDLG]	the water and is not exceed 1 N TT MCL [MRDL] SMCL=50	an indication of TU at any time 1.4 Level Found 0.05	of the effective 1.1 - 1.9 Range of Detection	ness of the filtration system. The tubidity limit se Naturally present in the environment Typical Source of	et by the NO
Turbidity: Turbidity is a mean EPA is 0.3 NTU in 95% of the Total Organic Carbon (TOC) Contaminants Units) Jnregulated Contar Manganese (ppb) Jnregulated Contar Haloacetic Acids	asure of the classical sample daily sample 2020 Year Minants 2020	loudiness of les and shall N/A MCLG [MRDLG]	the water and is not exceed 1 N TT MCL [MRDL] SMCL=50	an indication of TU at any time 1.4 Level Found 0.05	of the effective 1.1 - 1.9 Range of Detection	ness of the filtration system. The tubidity limit se Naturally present in the environment Typical Source of Contaminants	et by the NO Violation
Turbidity: Turbidity is a mean EPA Is 0.3 NTU in 95% of the	asure of the classical sample daily sample 2020 Year 2020 Ninants 2020	oudiness of les and shall N/A MCLG [MRDLG] N/A onitoring	the water and is not exceed 1 N TT MCL [MRDL] SMCL=50 Rule (UCI	an indication of TU at any time 1.4 Level Found 0.05 VIR4)	of the effective 1.1 - 1.9 Range of Detection 0 - 4.2	ness of the filtration system. The tubidity limit se Naturally present in the environment Typical Source of Contaminants	et by the NO Violation

NO

VILLAGE OF NEW LONDON

TABLE OF DETECTED CONTAMINANTS

Contaminants	Year	MCLG	MOL	Level	Range of	Typical Source of	
(Units)		MCLG	MCL	Found	Detection	Contaminants	Violation
Inorganic Contamin	ants					. containnants	
Fluoride (ppm)	. 2020	4.0	4.0	0.71	0.71 - 1.22	Erosion of natural deposits; Water additive, which promotes strong teeth Discharge from fertilizer and aluminum factories	NO
Barium (ppm)	2020	2.0	2.0	0.0284	0.02.84 -	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	NO
Nitrate (ppm)	2020	10	10	0.69	<0.5069	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of	NO
Microbiological Con	taminan	ts .				natural sewage	
Turbidity	2020	N/A	*T-F	0.27	0.04 - 0.27		[
% meeting standard)			TT	100%	100%	Soil runoff	NO
Total Organic Carbon (TOC)	2020	N/A	TT	N/A	N/A	Naturally present in the environment	NO

Turbidity: Turbidity is a measure of the cloudiness of water and is an indication of our effectiveness of the filtration system. Turbidity has no health effects, however, turbidity can interfere with disinfection and provide medium for microbial growth. Turdiity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea, and can be associated with headaches. The turbidity limit set by the EPA is 0.3 in 95% of the dally samples and shall not exceed 1 NTU at any time. As reported above the Village of New London's highest recorded turbidity result for 2020 was 0.27 NTU and lowest monthly percentage of samples meeting the turbidity limits was 100%.

Total organic carbon (TOC) has no health effects, however, it does provide a medium for the formation of disinfection by-products. These by-products include trihalomethanes (TTHM) and haloacetic acids (HAA5's). Some people who drink water containing TTHM's in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

Barium: Some people who drink water containing barium in excess of the MCL over many years could experience an increase in their blood pressure.

DEFINITIONS AL Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or the requirements which a water system must follow. MCL Maximum Contaminant Level: The highest level of contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology. MCLG Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. MRDL Maximum Residual Disinfectant Level: The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. MRDLG Maximum Residual Disinfectant Level Goal: The level of drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. Microsystin Liver toxins produced by a number of cyanobacteria. Total microcystins are the sum of all the variants/congeners (forms) of cyanotoxin microcystin. N/A Not applicable ND Not detected NTU Nephelometric Turbidity Unit: A measure of the clarity of water. pCi/l Picocuries per liter: A common measure of radioactivity.

ppb or ug/l	Parts Per Billion/micrograms per liter: One part per billion corresponds to about one minute in 2,000 years,	
ppm	Parts per Million are units of measure for concentration of a contaminant. A part per million corresponds to a one second in approximately over 11.5 days.	
ppb	Part per Bilion are units of measure for concentration of a contaminant. A part per billion corresponds to one second in 31.7 years.	
Total Organic Carbon	The value reported under "Level Found" for Total Organic Carbon (TOC) is the lowest ratio between percentage	
(TOC)	of TOC actually removed to the percentage of TOC required to be removed. A value of greater than one (1)	
	indicates that the water system is in compliance with TOC removal requirements. A value of less than one (1) indicates a violation of the TOC removal requirements.	
TT	Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.	
"<"	The "<" symbol: A symbol that means 'less than'. A result of "<.5" means that the lowest level detected was 5 and the contaminant in that sample was not detected.	
(DEFINITIONS continued)		